Catalog Module
The catalog module provides access to over 240 carefully curated color gradients from popular libraries including matplotlib, Plotly, and Palettable.
Catalog Access
The main catalog object provides organized access to over 240 color gradients:
from chromo_map import cmaps
# Access different catalog sources
mpl_maps = cmaps.matplotlib_by_type
plotly_maps = cmaps.plotly_by_type
palettable_maps = cmaps.palettable_by_type
# Access all maps in a flat structure
all_maps = cmaps.all
# Example: Get a specific gradient
viridis = cmaps.all['viridis']
plasma = cmaps.all['plasma']
The catalog is organized by source and type, making it easy to discover and access color palettes from different libraries.
Matplotlib Integration
Access matplotlib’s extensive colormap collection:
from chromo_map import cmaps
# Browse matplotlib categories
print(list(cmaps.matplotlib.keys()))
# Output: ['Perceptually Uniform Sequential', 'Sequential', 'Diverging', ...]
# Access specific categories
sequential = cmaps.matplotlib['Sequential']
diverging = cmaps.matplotlib['Diverging']
# Get specific colormaps
viridis = cmaps.matplotlib['Perceptually Uniform Sequential']['viridis']
plasma = cmaps.matplotlib['Perceptually Uniform Sequential']['plasma']
Plotly Color Scales
Access Plotly’s beautiful color scales:
from chromo_map import cmaps
# Browse Plotly scales
print(list(cmaps.plotly.keys()))
# Access specific scales
plotly_viridis = cmaps.plotly['Viridis']
plotly_plasma = cmaps.plotly['Plasma']
# Plotly categorical scales
plotly_set1 = cmaps.plotly['Set1']
Palettable Collections
Access curated palettes from the Palettable library:
from chromo_map import cmaps
# Browse Palettable collections
print(list(cmaps.palettable.keys()))
# Output: ['cartocolors', 'colorbrewer', 'scientific', ...]
# Access ColorBrewer palettes
colorbrewer = cmaps.palettable['colorbrewer']
# Scientific color palettes
scientific = cmaps.palettable['scientific']
Catalog Organization
The catalog is hierarchically organized:
cmaps/
├── matplotlib/
│ ├── Perceptually Uniform Sequential/
│ │ ├── viridis
│ │ ├── plasma
│ │ └── ...
│ ├── Sequential/
│ └── Diverging/
├── plotly/
│ ├── Viridis
│ ├── Plasma
│ └── ...
└── palettable/
├── colorbrewer/
├── scientific/
└── cartocolors/
Search and Discovery
Multiple ways to find the perfect colormap:
Direct Access
# If you know exactly what you want
viridis = cmaps.matplotlib['Perceptually Uniform Sequential']['viridis']
Search Function
from chromo_map import get_gradient
# Flexible search with patterns
viridis = get_gradient('viridis') # Exact match
blues = get_gradient('blue.*') # Regex pattern
any_plasma = get_gradient('plasma', case_sensitive=False)
Browsing
# Explore available options
for category in cmaps.matplotlib:
print(f"Category: {category}")
for name in list(cmaps.matplotlib[category].keys())[:3]:
print(f" - {name}")
Catalog Properties
- Lazy Loading
Color maps are loaded only when accessed, keeping memory usage low.
- Automatic Conversion
All colormaps are automatically converted to chromo-map Gradient objects.
- Consistent Interface
Regardless of source (matplotlib, Plotly, Palettable), all gradients have the same interface.
- Rich Metadata
Each gradient includes information about its source, length, and characteristics.
Working with Gradients
Once you have a gradient from the catalog, you can use all chromo-map features:
from chromo_map import get_gradient
# Get a gradient
viridis = get_gradient('viridis')
# Use chromo-map features
reversed_viridis = viridis.reverse()
shorter_viridis = viridis.resample(50)
# Access individual colors
start_color = viridis[0]
end_color = viridis[-1]
# Create variations
darker_viridis = viridis.adjust_brightness(-0.2)
Catalog Statistics
The catalog contains:
Matplotlib: 100+ colormaps across 8 categories
Plotly: 20+ built-in color scales
Palettable: 200+ curated scientific and cartographic palettes
Total: 300+ high-quality color gradients
Popular Gradients
Some of the most commonly used gradients:
- For Data Visualization
viridis, plasma, inferno (perceptually uniform)
coolwarm, RdBu (diverging)
Blues, Reds, Greens (sequential)
- For Scientific Applications
jet (classic, though not perceptually uniform)
thermal, matter, algae (scientific palettes)
- For Web/UI Design
Plotly color scales for modern aesthetics
ColorBrewer palettes for print-safe colors
Integration Examples
The catalog integrates seamlessly with plotting libraries:
import matplotlib.pyplot as plt
from chromo_map import get_gradient
# Use with matplotlib
gradient = get_gradient('viridis')
plt.imshow(data, cmap=gradient.to_mpl())
# Use with plotly
import plotly.graph_objects as go
colors = [color.hex for color in gradient]
fig = go.Figure(data=go.Scatter(y=data, marker=dict(color=colors)))
This makes chromo-map a powerful bridge between different color libraries and visualization tools.
Visual Gallery
For a visual overview of all available color palettes, browse our organized galleries:
Individual Source Galleries:
Plotly Color Scales - Modern web-friendly colors
Matplotlib Colormaps - Scientific colormaps
Palettable Palettes - Professional color schemes
These galleries display all color palettes with beautiful visual swatches, organized by source and type for easy browsing and selection.