pirrtools Documentation#
A powerful collection of tools for data analysis, featuring enhanced pandas functionality, Rich table styling, and intelligent file system navigation.
Quick Start#
Install pirrtools via pip:
pip install pirrtools
Basic usage:
import pandas as pd
import pirrtools
from rich.console import Console
# Create a DataFrame
df = pd.DataFrame({
'Sales': [150, 230, 180, 340],
'Profit': [25, 45, 32, 68]
})
# Convert to styled Rich table
console = Console()
table = df.pirr.to_rich(bg="viridis", title="Sales Report")
console.print(table)
Key Features#
- 🎨 Rich Table Styling
Convert pandas DataFrames and Series to beautifully styled Rich tables with gradients, custom headers, and professional theming.
- 💾 Pandas Caching
Efficient caching system for pandas objects using feather format, perfect for large datasets and complex preprocessing.
- 📁 AttrPath Navigation
Navigate file systems using dot notation with intelligent file viewing and organized directory structures.
- 🔧 Development Utilities
Module reloading, path management, and development workflow enhancements.
Documentation Contents#
User Guide
API Reference
Development
Interactive Tutorial#
Get started quickly with the interactive tutorial:
cd examples/
python tutor.py
This hands-on tutorial walks through all to_rich
features with live examples and step-by-step guidance.
Examples Directory#
The examples/
directory contains comprehensive demonstrations:
tutor.py
- Interactive tutorial (recommended starting point)to_rich_examples.py
- All styling features demonstratedexample_to_rich_styling.py
- Focus on gradient stylinggradient_example.py
- Simple gradient examplespandas_rich_styling_research.py
- Technical implementation details
Core Modules#
- pirrtools.pandas
Enhanced pandas functionality with caching and Rich table conversion via the
.pirr
accessor.- pirrtools.structures.attrpath
File system navigation using attribute access with intelligent file viewing.
- pirrtools.structures.attrdict
Dictionary with attribute access capabilities.
- pirrtools utilities
Path management, module reloading, and development helpers.
Installation#
Requirements#
Python 3.8+
pandas
numpy
rich
feather-format
ipython
pygments
jinja2
matplotlib
Development Installation#
For development work:
git clone https://github.com/pirsquared/pirrtools.git
cd pirrtools
pip install -e .[dev]
This installs development dependencies including pytest, black, pylint, and documentation tools.
Docker Development#
Use the provided Docker environment:
docker-compose up -d
docker-compose exec pirrtools-dev bash
Or with VS Code Dev Containers - open the project and select “Reopen in Container”.
Contributing#
Contributions are welcome! Please see the contributing guidelines for development setup, testing procedures, and code style requirements.
License#
This project is licensed under the MIT License. See the LICENSE file for details.
Support#
GitHub Issues: pirsquared/pirrtools#issues
PyPI Package: https://pypi.org/project/pirrtools/
Documentation: https://pirrtools.readthedocs.io/ (coming soon)